Title: Warm ionized gas filaments in non-central early-type galaxies
Abstract: Filamentary multiphase gas is nearly ubiquitous within the brightest cluster galaxies (BCGs) of cool-core clusters and is likely related to the feeding and feedback of their supermassive black holes. Determining how such filaments form is crucial to understanding the interplay between baryon cycling, active galactic nucleus (AGN) feedback, and the evolution of early-type galaxies (ETGs). However, BCGs account for only a small fraction of all ETGs and their gaseous atmospheres are thought to be strongly influenced by the extreme, dense cluster environments in which they reside. In this talk, I will present the results of our multiwavelength analysis of 126 nearby ETGs that sit outside of the immediate cores of galaxy groups and clusters (hereafter “non-central” ETGs) - with the aim of connecting our current understanding of filamentary multiphase gas formation to the greater ETG population. Using archival VLT-MUSE observations, we detect warm ionized gas in 54 of the 126 non-central ETGs. Most of these systems (35/54) host ordered, rotating gas disks, while the remainder (19/54) show extended filamentary structures that resemble the multiphase filaments seen in BCGs. I will discuss how the MUSE data, in tandem with archival Chandra X-ray observations, support an interpretation in which the warm filaments condense out of cooling, thermally unstable hot halos. Furthermore, I will present emission-line diagnostics that test the ionization mechanisms capable of powering the filaments.