Skip to main content

"Progress Toward Understanding the Genetic Variation Spurring Phenotypic Diversity in Columbines"

THM 116
Speaker(s) / Presenter(s):
Dr. Evangeline Ballerini

Evangeline Ballerini Ballerini Lab

Evangeline Ballerini is an Assistant Professor in Biological Sciences at California State University, Sacramento. Evangeline’s research examines the evolutionary genetics and developmental biology of traits influencing ecological interactions between plants and pollinators with a focus on the genus Aquilegia. Evangeline earned a BA from the Integrative Biology department at the University of California, Berkeley and a PhD from the Organismic and Evolutionary Biology department at Harvard University and conducted postdoctoral research at the University of Georgia and the University of California, Santa Barbara.



Abstract: The genus Aquilegia, commonly known as columbine, represents a classic example of adaptive radiation following the evolution of a key innovation - floral nectar spurs. Nectar spurs, tubular outgrowths of floral tissue that produce and store nectar, are hypothesized to promote speciation through pollinator specialization. Variation in spur morphology, along with other floral features such as color and orientation, allows flowers to adapt to different animal pollinators, contributing to reproductive isolation. I will present work focused on understanding the genetic basis of trait evolution in the genus Aquilegia at multiple evolutionary timescales. To shed light on how nectar spurs evolved in the Aquilegia ancestral lineage, I will highlight studies in which I used a combination of genomic and transcriptomic analyses to identify a key gene regulating nectar spur development. Focusing on more recent evolutionary history, I will discuss work in which I use similar techniques to explore the genetic basis of several floral traits distinguishing closely related Aquilegia species adapted to different animal pollinators and examine the population genetic processes influencing the evolution of these traits important for ecological speciation in the genus.



Ballerini_Flyer.pdf (789.29 KB)