Skip to main content

Biology Seminar

"The Role of Oxytocin Signaling Pathways in the Neuroimmune Response to Mate Bond Dissolution"

Glasper Selfie

Dr. Erica Glasper

Bio:
Erica R. Glasper graduated with honors from Randolph-Macon College in Ashland, Virginia, in 2002 with a major in Psychology and a minor in Biology. Initially pre-med, Erica discovered neuroscience during her freshman year at Randolph-Macon and was selected three times as a Summer Undergraduate Research Fellow. Her research experiences, aided by keen faculty mentorship, set her professional journey in motion. Erica went on to earn an M.A. and Ph.D. in Psychobiology and Behavioral Neuroscience from The Ohio State University. During her time as a postdoctoral scholar at Princeton University, she was supported by a fellowship from the UNCF/Merck Science Initiative and the National Institute on Aging at the National Institutes of Health. In 2011, Dr. Glasper joined the faculty at the University of Maryland – College Park, in the Department of Psychology, as an Assistant Professor. Her research in behavioral neuroendocrinology takes a multidisciplinary approach to understanding how experiences can shape our brains and resulting behavior. Following success as a researcher and educator, she was awarded tenure and promoted to the rank of Associate Professor. During the summer of 2021, the Glasper Lab returned to The Ohio State University, where she joined the Department of Neuroscience and the Institute for Behavioral Medicine Research within the College of Medicine as a tenured Associate Professor. She is excited about continued research success, and her return to the Buckeye State, using a combination of behavioral paradigms along with neuroendocrine, neuroanatomical, neuroimmune, neurochemical, and pharmacological techniques in three lines of research: 1) neurobiology of parenting, 2) neuroprotective role of rewarding social experiences, and 3) enduring consequences of paternal deprivation. Her research is currently funded by the NIH and The Ohio State University Wexner Medical Center.

Abstract:
Loss of a mate results in diverse impairments in bodily and psychological health. In this study, we tested the hypothesis that disrupting a mate bond, in the monogamous California mouse (Peromyscus californicus), would increase the neuroimmune response to a peripheral inflammatory stimulus (lipopolysaccharide [LPS]) through alterations in the oxytocin system. Adult (6-8 months old) male and female mice were exposed to three experimental conditions: 1) single housed, 2) mate bonded, or 3) mate-bonded separation. Mice were either injected with a vehicle (VEH) or an intraperitoneal injection of LPS (1mg/kg) and sacrificed 4-6 hours later.  While mate bond disruption did not increase anxiety-like behavior during open-field testing, physiological indices of mate bond disruption were observed. Males lost significantly more body weight following mate-bond separation, compared to the mate-bonded groups – this effect was not observed in females. Pro-inflammatory cytokine concentration (TNF and IL-1 beta) mRNA levels, measured by RT-qPCR in the hippocampus (HIPP) and hypothalamus (HYPO), were significantly enhanced in LPS-treated female mice following mate bond disruption, compared to the mate-bonded group. Mate bond dissolution did not exacerbate the LPS-induced increase in pro-inflammatory cytokines in males. Disruptions in oxytocin (OXT) signaling may contribute to the increased pro-inflammatory response in LPS-injected mice following mate bond dissolution, as HIPP mRNA levels for the oxytocin receptor (OXTR) in separated males and females were significantly decreased. Independent of endotoxic challenge, TNF and OXTR mRNA levels in separated mice were negatively correlated (as OXTR expression went down, TNF expression went up). Together, these results suggest that the effects of mate bond disruption in neuroimmune responsivity may involve alterations to OXT signaling. 

Watch the seminar here!

Date:
Location:
THM 116

"The Problem of Time in Climate Change Ecology"

Wolkovich Selfie

Dr. Elizabeth Wolkovich | Wolkovich Lab

Bio
Elizabeth Wolkovich is an Associate Professor in Forest and
Conservation Sciences and Canada Research Chair at the University of British Columbia. She runs the Temporal Ecology Lab, which focuses on understanding how climate change shapes plants and plant communities, with a focus on shifts in the timing of seasonal development (e.g., budburst, flowering and fruit maturity)---known as phenology. Her lab both collects new data on forest trees and winegrapes and collates existing data to provide global estimates of shifts in phenology with warming from plants to birds and other animals, and to understand how human choices will impact future winegrowing regions. Her research benefits from an interdisciplinary team of collaborators from agriculture, biodiversity science, climatology, evolution and viticulture, as well as from shared long-term datasets from across North America and Europe.

Abstract
Forty years ago ecology became increasingly focused on spatial structure and pattern, as researchers realized how fundamentally habitat loss and fragmentation reshapes populations and communities. A generation later, with spatial ecology firmly established as a cross-disciplinary, multi-scale field, anthropogenic climate change has forced ecology to revisit the importance of time. As warming stretches growing seasons around the globe, populations, species, communities and ecosystems are responding in turn. In this talk I outline two major challenges of temporal ecology with anthropogenic warming: stretched time and accelerated time. Focusing on
plant phenology I show how longer growing seasons may re-assemble communities: first I focus on examples from invasion biology then I build to a more general theory. Next I show how how warming may make many biological processes that are dependent on thresholds appear to slow as warming continues. This is because warming accelerates biological time while calendar time stands still. I close by reviewing preliminary results that merge phenological cues with trait ecology to show that forests may assemble via their spring phenology.

Watch the seminar here

Date:
Location:
THM 116

"The Molecular Circadian Clock and the Impact of Disrupted Rhythms and Sleep on Health and Disease"

Turek Selfie

Dr. Fred Turek

Bio:
Fred W. Turek, PhD received his undergraduate degree in the biological sciences from Michigan State University in 1969, and his PhD from Stanford University in 1973 where he carried out research on circadian and seasonal rhythms.  After postdoctoral training at the University of Texas at Austin, he took a faculty position at Northwestern University where he served as the Chair of the Department of Neurobiology & Physiology from 1987-98.  Dr. Turek is the founder and current Director of the Center for Sleep and Circadian Biology at Northwestern University.  Dr. Turek was the founding president of the Society for Research on Biological Rhythms (SRBR) and served in this capacity for six years.

Watch the seminar here!

 

 

Date:
Location:
THM 116

"Genetic, Social, and Developmental Drivers of Within-population Behavioral Variation"

Laskowski Selfie

Dr. Kate Laskowski | Laskowski Lab

Bio:
Dr. Kate Laskowski is interested in investigating how evolution has shaped the developmental processes that generate behavioral individuality. She does this by generating replicate individuals and groups of the naturally clonal fish, the Amazon molly, allowing her to “replay the developmental clock.” Kate obtained her Bachelor’s of Science at the University of Maryland Baltimore County and her PhD from the University of Illinois where she worked under Alison Bell. She then moved to Berlin Germany to work at the Leibniz Institute of Freshwater Ecology & Inland Fisheries with Max Wolf and Jens Krause before joining the Department of Evolution & Ecology at the University of California Davis in 2019.  

Abstract:
Individual behavioral variation is ubiquitous across the animal kingdom. Explaining the continued generation and maintenance of such variation is a fundamental goal in behavioral and evolutionary ecology. Our research tests key predictions drawn from theoretical models about how genetic correlations and developmental processes can drive the emergence of consistent individual behavioral variation. This work has shown that competition for, and acquisition of, resources may play key roles in shaping behavior variation both on evolutionary and developmental timescales. Using the clonal Amazon molly and an innovative high-resolution tracking system we can follow and manipulate individual experience with salient environmental cues such as resource availability and relative risk. We can track the behavioral development of individual fish from birth in, up to now, unprecedented detail, allowing us to pinpoint exactly when and in response to which cues individuality emerges. Our results highlight that in order to fully explain the presence of individual behavioral variation we need a comprehensive conceptual framework that explicitly accounts for how natural selection has shaped the developmental process.
 

Watch the seminar here!

Laskowski Fish

Date:
Location:
THM 116

"Quantitative Proteomics for Understanding Epigenetic Mechanisms in Human Disease"

Garcia Selfie

Dr. Benjamin Garcia | Garcia Lab

Bio: 
Benjamin A. Garcia obtained his BS in Chemistry at UC Davis in 2000, where he worked as an undergraduate researcher in Prof. Carlito Lebrilla’s laboratory. He received his PhD in Chemistry in 2005 at the University of Virginia under Prof. Donald Hunt and then was an NIH NRSA Postdoctoral Fellow at the University of Illinois under Prof. Neil Kelleher from 2005-2008. From there Ben was appointed as an Assistant Professor in the Molecular Biology Department at Princeton University from 2008-2012, until his recruitment as the Presidential Associate Professor of Biochemistry and Biophysics at the University of Pennsylvania Perelman School of Medicine in 2012, promoted to full Professor in 2016, and named the John McCrea Dickson M.D. Presidential Professor in 2017. Ben moved in the summer of 2021 to the Washington University School of Medicine in St. Louis to become the Raymond H. Wittcoff Distinguished Professor and Head of the Department of Biochemistry and Molecular Biophysics. The Garcia lab has been developing and applying novel proteomic approaches and bioinformatics for interrogating protein modifications, especially those involved in epigenetic mechanisms such as histones during human disease, publishing over 400 publications. He is presently an Associate Editor of the Analytical Chemistry, and Mass Spectrometry Reviews journals; and serves on the editorial boards for the Molecular Omics, the Journal of Proteome Research and the Molecular and Cellular Proteomics journals. He also serves on the Board of Directors for the U.S. Human Proteome Organization (HUPO), the HUPO Governing Council/Executive Committee and the Executive Committee of the American Chemical Society (ACS) Analytical Chemistry Division. Ben has been recognized with many honors and awards for his mass spectrometry research including the American Society for Mass Spectrometry (ASMS) Research Award, a National Science Foundation CAREER award, an NIH Director’s New Innovator Award, the Presidential Early Career Award for Scientists and Engineers (PECASE), an Alfred P. Sloan Fellowship, the PITTCON Achievement Award, the Ken Standing Award, the ACS Arthur F. Findeis Award, The Protein Society Young Investigator Award, the ASMS Biemann Medal, the HUPO Discovery in Proteomic Sciences Award, the Eastern Analytical Symposium (EAS) Outstanding Achievement in Mass Spectrometry Award and was named a Fellow of the Royal Society of Chemistry.

Abstract:
Histones are small proteins that package DNA into chromosomes, and a large number of studies have showed that several post-translational modification (PTM) sites on the histones are associated with both gene activation and silencing.  Along with DNA and small non-coding RNA, histone PTMs make up epigenetic mechanisms that control gene expression patterns outside of DNA sequence mutations. Dysregulation of these chromatin networks underlie several human diseases such as cancer. Here I will give an update on technology advancements that have allowed for high-throughput quantitative mass spectrometry analyses of histone PTMs and chromatin structure, and how we are applying these methods to understand epigenetic reprogramming found in malignant peripheral nerve sheath tumors (MPNSTs). MPNST is an aggressive sarcoma with recurrent loss of function alterations in polycomb-repressive complex 2 (PRC2), a histone-modifying complex involved in transcriptional silencing.

Date:
Location:
THM 116

"Be Fruitful and Multiply: How Reproductive Capacity Evolves"

Selfie

Dr. Cassandra Extavour | Extavour Lab

Bio
Cassandra Extavour is a native of Toronto, where she attended the University of Toronto Schools and went on to obtain an Honors BSc at the University of Toronto with a specialist in Molecular Genetics and Molecular Biology, a Major in Mathematics and a Minor in Spanish. She obtained her PhD with Antonio Garcia Bellido at the Severo Ochoa Center for Molecular Biology at the Autonomous University of Madrid. She performed postdoctoral work first with Michalis Averof at the Institute for Molecular Biology and Biotechnology in Crete, Greece, and subsequently with Michael Akam at the University of Cambridge. At Cambridge she received a BBSRC Research Grant and became a Research Associate in the Department of Zoology. In 2007 she established her independent laboratory as an Assistant Professor in the Department of Organismic and Evolutionary Biology at Harvard University, where she was promoted to Associate Professor in 2011 and to Full Professor in 2014. In 2021 she became a Howard Hughes Medical Institute Investigator, and was named the Timken Professor of Organismic and Evolutionary Biology and of Molecular and Cellular Biology at Harvard. Click here to read more.

Abstract:
Reproduction is a crucial fitness parameter, essential for species survival and evolution. Despite its importance, there is massive variation in reproductive capacity across animals, even between very closely related species. Moreover, reproductive capacity can be modified by environmental and ecological factors. Our aim is to understand how genetic variation interacts with ecological variation to regulate distinct and reproductive capacities between species, to determine whether and how ecological variation contributes to the evolution of adaptive variation in reproductive capacity. Our approach takes advantage of the fact that in sexually reproducing animals, the number of offspring that an individual can produce is often predicted by the anatomy of the ovary or testis, the sites of gamete production. In female insects, ovaries are subdivided into egg-producing units called ovarioles, which are generated in species-specific numbers during development. Ovariole number, and correspondingly reproductive capacity, can vary by more than four orders of magnitude across insects. I will discuss our findings on the mechanisms of genetic and environmental control of ovariole number in closely and distantly related insect species, and their implications for the broader questions of the genetic and developmental basis of fitness-relevant evolutionary change.

Date:
Location:
THM 116

14th Annual Thomas Hunt Morgan Lecture: "Human Evolution and Adaptation in Africa"

Click here for more information about Dr. Sarah Tishkoff.

Abstract:

Africa is thought to be the ancestral homeland of all modern human populations.  It is also a region of tremendous cultural, linguistic, climatic, and genetic diversity.   Despite the important role that African populations have played in human history, they remain one of the most underrepresented groups in human genomics studies. A comprehensive knowledge of patterns of variation in African genomes is critical for a deeper understanding of human genomic diversity, the identification of functionally important genetic variation, the genetic basis of adaptation to diverse environments and diets, and for reconstructing modern human origins. African populations practice diverse subsistence patterns (hunter-gatherers, pastoralists, agriculturalists, and agro-pastoralists) and live in diverse environments with differing pathogen exposure (tropical forest, savannah, coastal, desert, low altitude, and high altitude) and, therefore, are likely to have experienced local adaptation. In this talk I will discuss results of analyses of genome-scale genetic variation in geographically, linguistically, and ethnically diverse African populations in order to reconstruct human evolutionary history in Africa, African and African American ancestry, as well as the genetic basis of adaption to diverse environments.

Invite

Date:
Location:
WT Young Library Auditorium

"Functional Screening Approaches to Identify Cellular Toxicity Mechanisms"

SelfieDr. Christopher Vulpe | Vulpe Lab

Bio

Chris Vulpe, MD, PhD. is a Professor at the University of Florida, Gainesville in the Center for Environmental

and Human Toxicology. Dr. Vulpe received his MD and PhD from the University of California, San Francisco.

Dr. Vulpe’s group uses systems level approaches in eukaryotes from yeast to people to identify the functional

components that respond to and modulate the consequences of environmental stressors. Most recently, his laboratory is utilizing genome wide and targeted CRISPR screens to understand the mechanisms of toxicity of environmental chemicals. Dr. Vulpe is an author or co-author on >175 papers in peer reviewed journals and books. His group uses functional, genomic, and genetic approaches to provide insight into mechanisms of toxicity in diverse model systems including human models such as human cell culture, organoids, and rodents, as well as ecologically relevant organisms such as Daphnia magna.

 

Graphics

Date:
Location:
Plant Science Building (Cameron Williams Auditorium) and Zoom: https://uky.zoom.us/j/88492095664

601 Seminar | "Long-distance Relationships in the Control of Gene Regulation During Development, Disease, and Evolution"

SelfieDr. Francois Spitz | Spitz Lab

Bio:

PhD from Université Paris 6 (France)

Group Leader at the European Molecular Biology Laboratory (2006-2015) (Heidelberg, Germany)

Head of Research Unit at the Institut Pasteur (2015-2019) (Paris, France)

Professor, The University of Chicago (2019-.)

Abstract:

The mechanisms that regulate the efficiency and specificity of interactions between distant genes and cis-regulatory elements such as enhancers play a central role in shaping the specific regulatory programs that control cell fate and identity. In particular, the (epi)genetic elements that organize the 3D folding of the genome in specific loops and domains have emerged as key determinants of this process. I will discuss our current views on how 3D genome architecture is organized, how it influences gene regulatory interactions and illustrate how alterations of the mechanisms and elements that organize genomes in 3D could contribute to genomic disorders and genome evolution.

Date:
-
Location:
THM 116
Subscribe to Biology Seminar